lunes, 21 de enero de 2013

OPERARACIONES CON NUMEROS NATURALES

El conjunto de los números naturales está formado por:
N= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}
Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal).
Los números naturales están ordenados, lo que nos permite comparar dos números naturales:
5 > 3;    5 es mayor que 3.
3 < 5;    3 es menor que 5.
Los números naturales son ilimitados, si a un número natural le sumamos 1, obtenemos otro número natural.

Operaciones con números naturales

Suma de números naturales

a + b = c

Los términos de la suma, a y b, se llaman sumandos y el resultado, c, suma.

Propiedades de la suma

1.Interna: a + b PerteneceConjunto de los números naturales
2. Asociativa: (a + b) + c = a + (b + c)
(2 + 3) + 5 = 2 + (3 + 5)
5 + 5 = 2 + 8
10 = 10
3.Conmutativa: a + b = b + a
2 + 5 = 5 + 2
7 = 7
4. Elemento neutro: a + 0 = a
3 + 0 = 3

Resta de números naturales

a - b = c

Los términos que intervienen en una resta se llaman: a, minuendo y b, sustraendo. Al resultado, c, lo llamamos diferencia.

Propiedades de la resta

1. No es una operación interna
2 − 5 pertenece Números naturales
2. No es Conmutativa
5 − 2 ≠ 2 − 5

Mutiplicación de números naturales

a · b = c

Los términos a y b se llaman factores y el resultado, c, producto.

Propiedades de la multiplicación

1. Interna: a · b PerteneceConjunto de los números naturales
2. Asociativa: (a · b) · c = a · (b · c)
(2 · 3) · 5 = 2· (3 · 5)
6 · 5 = 2 · 15
30 = 30
3. Conmutativa: a · b = b · a
2 · 5 = 5 · 2
10 = 10
4. Elemento neutro: a · 1 = a
3 · 1 = 3
5. Distributiva: a · (b + c) = a · b + a · c
2 · (3 + 5) = 2 · 3 + 2 · 5
2 · 8 = 6 + 10
16 = 16
6. Sacar factor común: a · b + a · c = a · (b + c)
2 · 3 + 2 · 5 = 2 · (3 + 5)
6 + 10 = 2 · 8
16 = 16

División de números naturales

D : d = c

Los términos que intervienen en un división se llaman, D, dividendo y d divisor. Al resultado, c, lo llamamos cociente.

Propiedades de la división

1.División exacta
División exacta          15 = 5 · 3
2. División entera
División entera            17 = 5 · 3 + 2
3. No es una operación interna
2 : 6 pertenece Números naturales
4. No es Conmutativo.
6 : 2 ≠ 2 : 6
5. Cero dividido entre cualquier número da cero.
0 : 5 = 0
6. No se puede dividir por 0.

Propiedades de las potencias

1.a0 = 1
2. a1 = a
3. Producto de potencias con la misma base: am · a n = am+n
25 · 22 = 25+2 = 27
4. Cocointe de potencias con la misma base: am : a n = am - n
25 : 22 = 25 - 2 = 23
5. Potencia de una potencia: (am)n = am · n
(25)3 = 215 
6. Producto de potencias con el mismo exponente: an · b n = (a · b) n
23 · 43 = 83
7. Cociente de potencias con el mismo exponente: an : bn = (a : b)n
63 : 33 = 23

Ejercicios de potencias

1 33 · 34 · 3 = 38
2 57 : 53 = 54
3 (53)4 = 512
4 (5 · 2 · 3) 4 = 304
5(34)4 = 316
6 [(53)4]2 = (512)2 = 524
7 (82)3 =[( 23)2]3 = (26)3 = 218
8 (93)2 = [(32)3]2 = (36)2 = 312
9 25 · 24 · 2 = 210
10 27 : 26 = 2
11 (22)4 = 28
12 (4 · 2 · 3)4 = 244
13(25)4 = 220
14 [(23 )4]0 = (212)0 = 20 = 1
15 (272)5 =[(33)2]5 = (36)5 = 330
16 (43)2 = [(22)3]2 = (26)2 = 212

Propiedades de las raíces

1.Raíz exacta: Radicando= (Raíz)2   
raíz cuadrada exacta
2. Raíz entera: Radicando= (Raíz)2 + Resto
raíz cuadrada exacta

Prioridades en las operaciones

1º.Efectuar las operaciones entre paréntesis, corchetes y llaves..
2º.Calcular las potencias y raíces.
3º.Efectuar los productos y cocientes.
4º.Realizar las sumas y restas.

1. Operaciones combinadas sin paréntesis

1.1 Combinación de sumas y diferencias.

9 − 7 + 5 + 2 − 6 + 8 − 4 =
Comenzando por la izquierda, vamos efectuando las operaciones según aparecen.
= 9 − 7 + 5 + 2 − 6 + 8 − 4 = 7

1.2 Combinación de sumas, restas y productos.

3 · 2 − 5 + 4 · 3 − 8 + 5 · 2 =
Realizamos primero los productos por tener mayor prioridad.
= 6 − 5 + 12 − 8 + 10 =
Efectuamos las sumas y restas.
= 6 − 5 + 12 − 8 + 10 = 15

1.3 Combinación de sumas, restas , productos y divisiones.

10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 2 − 16 : 4 =
Realizamos los productos y cocientes en el orden en el que los encontramos porque las dos operaciones tienen la misma prioridad.
= 5 + 15 + 4 − 10 − 8 + 8 − 4 =
Efectuamos las sumas y restas.
= 5 + 15 + 4 − 10 − 8 + 8 − 4 = 10

1.4 Combinación de sumas, restas , productos , divisiones y potencias.

23 + 10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 22 − 16 : 4 =
Realizamos en primer lugar las potencias por tener mayor prioridad.
= 8 + 10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 4 − 16 : 4 =
Seguimos con los productos y cocientes.
= 8 + 5 + 15 + 4 − 10 − 8 + 16 − 4 =
Efectuamos las sumas y restas.
= 26

2. Operaciones combinadas con paréntesis

(15 − 4) + 3 − (12 − 5 · 2) + (5 + 16 : 4) −5 + (10 − 23)=
Realizamos en primer lugar las operaciones contenidas en ellos.
= (15 − 4) + 3 − (12 − 10) + (5 + 4) − 5 + (10 − 8 )=
Quitamos paréntesis realizando las operaciones.
= 11 + 3 − 2 + 9 − 5 + 2 = 18

3.Operaciones combinadas con paréntesis y corchetes

[15 − (23 − 10 : 2 )] · [5 + (3 ·2 − 4 )] − 3 + (8 − 2 · 3 ) =
Primero operamos con las potencias, productos y cocientes de los paréntesis.
= [15 − (8 − 5 )] · [5 + (6 − 4 )] − 3 + (8 − 6 ) =
Realizamos las sumas y restas de los paréntesis.
= [15 − 3] · [5 + 2 ] − 3 + 2=
En vez de poner corchetes pondremos paréntesis directamente:
= (15 − 3) · (5 + 2) − 3 + 2=
.
= 12 · 7 − 3 + 2

No hay comentarios:

Publicar un comentario