lunes, 21 de enero de 2013

OPERARACIONES CON NUMEROS NATURALES

El conjunto de los números naturales está formado por:
N= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}
Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal).
Los números naturales están ordenados, lo que nos permite comparar dos números naturales:
5 > 3;    5 es mayor que 3.
3 < 5;    3 es menor que 5.
Los números naturales son ilimitados, si a un número natural le sumamos 1, obtenemos otro número natural.

Operaciones con números naturales

Suma de números naturales

a + b = c

Los términos de la suma, a y b, se llaman sumandos y el resultado, c, suma.

Propiedades de la suma

1.Interna: a + b PerteneceConjunto de los números naturales
2. Asociativa: (a + b) + c = a + (b + c)
(2 + 3) + 5 = 2 + (3 + 5)
5 + 5 = 2 + 8
10 = 10
3.Conmutativa: a + b = b + a
2 + 5 = 5 + 2
7 = 7
4. Elemento neutro: a + 0 = a
3 + 0 = 3

Resta de números naturales

a - b = c

Los términos que intervienen en una resta se llaman: a, minuendo y b, sustraendo. Al resultado, c, lo llamamos diferencia.

Propiedades de la resta

1. No es una operación interna
2 − 5 pertenece Números naturales
2. No es Conmutativa
5 − 2 ≠ 2 − 5

Mutiplicación de números naturales

a · b = c

Los términos a y b se llaman factores y el resultado, c, producto.

Propiedades de la multiplicación

1. Interna: a · b PerteneceConjunto de los números naturales
2. Asociativa: (a · b) · c = a · (b · c)
(2 · 3) · 5 = 2· (3 · 5)
6 · 5 = 2 · 15
30 = 30
3. Conmutativa: a · b = b · a
2 · 5 = 5 · 2
10 = 10
4. Elemento neutro: a · 1 = a
3 · 1 = 3
5. Distributiva: a · (b + c) = a · b + a · c
2 · (3 + 5) = 2 · 3 + 2 · 5
2 · 8 = 6 + 10
16 = 16
6. Sacar factor común: a · b + a · c = a · (b + c)
2 · 3 + 2 · 5 = 2 · (3 + 5)
6 + 10 = 2 · 8
16 = 16

División de números naturales

D : d = c

Los términos que intervienen en un división se llaman, D, dividendo y d divisor. Al resultado, c, lo llamamos cociente.

Propiedades de la división

1.División exacta
División exacta          15 = 5 · 3
2. División entera
División entera            17 = 5 · 3 + 2
3. No es una operación interna
2 : 6 pertenece Números naturales
4. No es Conmutativo.
6 : 2 ≠ 2 : 6
5. Cero dividido entre cualquier número da cero.
0 : 5 = 0
6. No se puede dividir por 0.

Propiedades de las potencias

1.a0 = 1
2. a1 = a
3. Producto de potencias con la misma base: am · a n = am+n
25 · 22 = 25+2 = 27
4. Cocointe de potencias con la misma base: am : a n = am - n
25 : 22 = 25 - 2 = 23
5. Potencia de una potencia: (am)n = am · n
(25)3 = 215 
6. Producto de potencias con el mismo exponente: an · b n = (a · b) n
23 · 43 = 83
7. Cociente de potencias con el mismo exponente: an : bn = (a : b)n
63 : 33 = 23

Ejercicios de potencias

1 33 · 34 · 3 = 38
2 57 : 53 = 54
3 (53)4 = 512
4 (5 · 2 · 3) 4 = 304
5(34)4 = 316
6 [(53)4]2 = (512)2 = 524
7 (82)3 =[( 23)2]3 = (26)3 = 218
8 (93)2 = [(32)3]2 = (36)2 = 312
9 25 · 24 · 2 = 210
10 27 : 26 = 2
11 (22)4 = 28
12 (4 · 2 · 3)4 = 244
13(25)4 = 220
14 [(23 )4]0 = (212)0 = 20 = 1
15 (272)5 =[(33)2]5 = (36)5 = 330
16 (43)2 = [(22)3]2 = (26)2 = 212

Propiedades de las raíces

1.Raíz exacta: Radicando= (Raíz)2   
raíz cuadrada exacta
2. Raíz entera: Radicando= (Raíz)2 + Resto
raíz cuadrada exacta

Prioridades en las operaciones

1º.Efectuar las operaciones entre paréntesis, corchetes y llaves..
2º.Calcular las potencias y raíces.
3º.Efectuar los productos y cocientes.
4º.Realizar las sumas y restas.

1. Operaciones combinadas sin paréntesis

1.1 Combinación de sumas y diferencias.

9 − 7 + 5 + 2 − 6 + 8 − 4 =
Comenzando por la izquierda, vamos efectuando las operaciones según aparecen.
= 9 − 7 + 5 + 2 − 6 + 8 − 4 = 7

1.2 Combinación de sumas, restas y productos.

3 · 2 − 5 + 4 · 3 − 8 + 5 · 2 =
Realizamos primero los productos por tener mayor prioridad.
= 6 − 5 + 12 − 8 + 10 =
Efectuamos las sumas y restas.
= 6 − 5 + 12 − 8 + 10 = 15

1.3 Combinación de sumas, restas , productos y divisiones.

10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 2 − 16 : 4 =
Realizamos los productos y cocientes en el orden en el que los encontramos porque las dos operaciones tienen la misma prioridad.
= 5 + 15 + 4 − 10 − 8 + 8 − 4 =
Efectuamos las sumas y restas.
= 5 + 15 + 4 − 10 − 8 + 8 − 4 = 10

1.4 Combinación de sumas, restas , productos , divisiones y potencias.

23 + 10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 22 − 16 : 4 =
Realizamos en primer lugar las potencias por tener mayor prioridad.
= 8 + 10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 4 − 16 : 4 =
Seguimos con los productos y cocientes.
= 8 + 5 + 15 + 4 − 10 − 8 + 16 − 4 =
Efectuamos las sumas y restas.
= 26

2. Operaciones combinadas con paréntesis

(15 − 4) + 3 − (12 − 5 · 2) + (5 + 16 : 4) −5 + (10 − 23)=
Realizamos en primer lugar las operaciones contenidas en ellos.
= (15 − 4) + 3 − (12 − 10) + (5 + 4) − 5 + (10 − 8 )=
Quitamos paréntesis realizando las operaciones.
= 11 + 3 − 2 + 9 − 5 + 2 = 18

3.Operaciones combinadas con paréntesis y corchetes

[15 − (23 − 10 : 2 )] · [5 + (3 ·2 − 4 )] − 3 + (8 − 2 · 3 ) =
Primero operamos con las potencias, productos y cocientes de los paréntesis.
= [15 − (8 − 5 )] · [5 + (6 − 4 )] − 3 + (8 − 6 ) =
Realizamos las sumas y restas de los paréntesis.
= [15 − 3] · [5 + 2 ] − 3 + 2=
En vez de poner corchetes pondremos paréntesis directamente:
= (15 − 3) · (5 + 2) − 3 + 2=
.
= 12 · 7 − 3 + 2

viernes, 18 de enero de 2013

MAPA POLITICO DE AFRICA


NUMEROS NATURALES

Número natural

 
 
 
Los números naturales pueden usarse para contar (una manzana, dos manzanas, tres manzanas, …).
Un número natural es cualquiera de los números que se usan para contar los elementos de un conjunto. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para la enumeración.

Índice

Convenios de notación

Puesto que los números naturales se utilizan para contar objetos, el cero puede considerarse el número que corresponde a la ausencia de los mismos. Dependiendo del autor, el conjunto de los números naturales puede presentarse entonces de dos maneras distintas:
  • Definición sin el cero:
\mathbb N=\{1,2,3,4,...\}
  • Definición con el cero:
\mathbb N=\{0,1,2,3,4,...\}
donde la N de natural se suele escribir en "negrita de pizarra".
Ambas presentaciones son utilizadas en distintas áreas de las matemáticas. Históricamente, el uso del cero como numeral fue introducido en Europa en el siglo XII con la conquista musulmana de la península ibérica,1 pero no se consideraba un número natural.2
Sin embargo, con el desarrollo de la teoría de conjuntos en el siglo XIX, el cero se incluyó en las definiciones conjuntistas de los números naturales. Esta convención prevalece en dicha disciplina,3 y otras, como la teoría de la computación.4 En particular, el estándar DIN 5473 adopta esta definición.4 Sin embargo, en la actualidad ambos convenios conviven.5
Para distinguir ambas definiciones a veces se introducen símbolos distintos. Por ejemplo, incluyendo el cero en los naturales, a los números naturales sin el cero, o enteros positivos se les denota como:
\mathbb N^* 6

Historia

Antes de que surgieran los números para la representación de cantidades, el ser humano usó otros métodos para contar, utilizando para ello objetos como piedras, palitos de madera, nudos de cuerdas, o simplemente los dedos. Más adelante comenzaron a aparecer los símbolos gráficos como señales para contar, por ejemplo marcas en una vara o simplemente trazos específicos sobre la arena (Véase hueso de Ishango). Pero fue en Mesopotamia alrededor del año 4.000 a. C. donde aparecen los primeros vestigios de los números que consistieron en grabados de señales en formas de cuñas sobre pequeños tableros de arcilla empleando para ello un palito aguzado. De aquí el nombre de escritura cuneiforme. Este sistema de numeración fue adoptado más tarde, aunque con símbolos gráficos diferentes, en la Grecia Antigua y en la Antigua Roma. En la Grecia antigua se empleaban simplemente las letras de su alfabeto, mientras que en la antigua Roma además de las letras, se utilizaron algunos símbolos.
Quien colocó al conjunto de los números naturales sobre lo que comenzaba a ser una base sólida, fue Richard Dedekind en el siglo XIX. Este los derivó de una serie de postulados (lo que implicaba que la existencia del conjunto de números naturales se daba por cierta), que después precisó Peano dentro de una lógica de segundo orden, resultando así los famosos cinco postulados que llevan su nombre. Frege fue superior a ambos, demostrando la existencia del sistema de números naturales partiendo de principios más fuertes. Lamentablemente la teoría de Frege perdió, por así decirlo, su credibilidad y hubo que buscar un nuevo método. Fue Zermelo quien demostró la existencia del conjunto de números naturales, dentro de su teoría de conjuntos y principalmente mediante el uso del axioma de infinitud que, con una modificación de este hecha por Adolf Fraenkel, permite construir el conjunto de números naturales como ordinales según von Neumann.
las propiedades de los números naturales son:
  1. Que un número natural va después del otro
  2. Que dentro de dos números naturales consecutivos no puede haber otro
  3. Que son infinitos

Construcciones axiomáticas

Históricamente, se han realizado propuestas para axiomatizar la noción habitual de números naturales, de entre las que destacan las de Peano y la construcción a partir de la teoría de conjuntos.

Axiomas de Peano

Los axiomas de Peano rigen la estructura números naturales sin necesidad de otra teoría (por ejemplo, la de conjuntos) ni de las nociones aritméticas de suma o equivalencia. Requiere, eso sí, de la noción previa de sucesor. Los cinco axiomas de Peano son (definición sin el cero):
  1. El 1 es un número natural.
  2. Si n es un número natural, entonces el sucesor de n también es un número natural.
  3. El 1 no es el sucesor de ningún número natural.
  4. Si hay dos números naturales n y m con el mismo sucesor, entonces n y m son el mismo número natural.
  5. Si el 1 pertenece a un conjunto de números A, y además siempre se verifica que: dado un número natural cualquiera que esté en A, su sucesor también pertenece a A; entonces A contiene al conjunto de todos los números naturales. Este es el axioma de inducción, que captura la idea de inducción matemática.

Definición en teoría de conjuntos

En teoría de conjuntos se define al conjunto de los números naturales como el mínimo conjunto que es inductivo. La idea es que se pueda contar haciendo una biyección desde un número natural hasta el conjunto de objetos que se quiere contar. Es decir, para dar la definición de número 2, se requiere dar un ejemplo de un conjunto que contenga precisamente dos elementos. Esta definición fue proporcionada por Bertrand Russell, y más tarde simplificada por Von Neumann quien propuso que el candidato para 2 fuera el conjunto que contiene solo a 1 y a 0.
Formalmente, un conjunto x se dice que es un número natural si cumple
  1. Para cada y\in x, y\subseteq x
  2. La relación \in _x = \left\{\left(a,b\right)\in x\times x \mid a\in b\right\} es un orden total estricto en x
  3. Todo subconjunto no vacío de x tiene elementos mínimo y máximo en el orden \in _x
Se intenta pues, definir un conjunto de números naturales donde cada elemento respete las convenciones anteriores. Primero se busca un conjunto que sea el representante del 0, lo cual es fácil ya que sabemos que \emptyset no contiene elementos. Luego se definen los siguientes elementos de una manera ingeniosa con el uso del concepto de sucesor.
Se define-según Halmos- entonces que el conjunto vacío es un número natural que se denota por 0 y que cada número natural n tiene un sucesor denotado como n^+. Estas ideas quedan formalizadas mediante las siguientes expresiones:
0=\emptyset
n^+=n\cup \{n\}
De esta manera, cada elemento de algún número natural es un número natural; a saber, un antecesor de él. Por ejemplo:
  • Por definición 0=\{\} (lo cual refuerza el hecho de que 0 no tiene antecesores)
  • 1 es el sucesor de 0, entonces 1=0^+=\emptyset\cup\{0\}=\{0\}
  • 2 es el sucesor de 1, pero 1 es {0}, entonces 2=1^+=\{0\}\cup\{1\}=\{0,1\}
  • y en general
3=\{0,1,2\}\,
4=\{0,1,2,3\}\,
5=\{0,1,2,3,4\}\,
\vdots